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Abstract. A system of particles is studied in which the stochastic processes are one-particle type-change
(or one-particle diffusion) and multi-particle annihilation. It is shown that, if the annihilation rate tends to
zero but the initial values of the average number of the particles tend to infinity, so that the annihilation
rate times a certain power of the initial values of the average number of the particles remain constant (the
double scaling) then if the initial state of the system is a multi-Poisson distribution, the system always
remains in a state of multi-Poisson distribution, but with evolving parameters. The large time behavior
of the system is also investigated. The system exhibits a dynamical phase transition. It is seen that for
a k-particle annihilation, if k is larger than a critical value kc, which is determined by the type-change
rates, then annihilation does not enter the relaxation exponent of the system; while for k < kc, it is the
annihilation (in fact k itself) which determines the relaxation exponent.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 02.50.Ga
Markov processes

1 Introduction

People have studied reaction-diffusion systems, using an-
alytical techniques, approximation methods, and sim-
ulations. A large fraction of exact results belong to
low-dimensional (specially one-dimensional) systems, as
solving low-dimensional systems should in principle be
easier [1–13]. Despite their simplicity, these systems ex-
hibit rather rich and non-trivial dynamical and stationary
behavior. Studies on the models far from equilibrium have
shown that there is a remarkably rich variety of critical
phenomena [1]. Among the important aspects of reaction-
diffusion systems, are the stationary state of the system
(or one of the quantities describing the system) and the
relaxation behavior of the system towards this configura-
tion.

Field theoretic methods have been used to study diffu-
sion, recombination, and other dynamic manifestations of
non-quantum-mechanical objects (for a review see [14]).
The techniques of field theory on a lattice are used to ex-
amine the diffusion and reaction processes of particles [14].
The field theoretic methods and the dynamic renormaliza-
tion group (RG) have been applied to study the univer-
sal scaling properties of reaction-diffusion models [15,16].
They have also been used to study fluctuations in reaction-
diffusion problems, for example to study the single-species
annihilation of k particles to l particles (l < k) [15]. In [17]
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a model is investigated where organisms die and give birth
with equal rates, and also diffuse. It is shown there that
at dimensions smaller than or equal to 2, there is aggre-
gation, while at larger dimensions there is no clustering.
In [18,19], a model is investigated where particles are cre-
ated, annihilated, and diffused on a lattice. For the case
of one- or two-particle annihilation and creation, exact re-
sults are obtained. In all these cases, bosonic formulations
have been used, meaning that each site can be occupied
by more than one particle.

In this paper, a stochastic model is considered in which
the (stochastic) variables of the system are the numbers
of various types of particles. The term type can refer to
species as well as position of the particle. There are single-
particle type-changes, as well as k-particle annihilations.
Specially, a case is studied where the annihilation rate
tends to zero while this rate times the (k − 1)th power
of the initial values of the average particle-numbers re-
mains constant. It is shown that in this double-scaling
limit, the evolution equations for the annihilation opera-
tors contain only annihilation operators. Specifically, if the
initial state of the system is a multi-Poisson distribution,
then the system always remains in a state of multi-Poisson
distribution, but with evolving parameters. The parame-
ters evolve in a set of equations which in fact are the mean
field equations.

It is further shown that the system exhibits a dynami-
cal phase transition. The large time behavior of the system
is controlled by the spectrum of the evolution operator
corresponding to single-particle type-changes, and k. It is
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shown that if k exceeds a critical value kc, which is deter-
mined by type-change rates, annihilation does not enter
the relaxation exponent of the system; while for k < kc,
it is the annihilation which determines the relaxation ex-
ponent.

The scheme of the paper is the following. In Section 2,
some general techniques are introduced, mainly to fix no-
tation. In Section 3, the double-scaling is discussed. In
Section 4, the large-time behavior of the system and the
dynamical phase transition are investigated. Section 5 is
devoted to the concluding remarks.

2 The general technique

To fix notation, let’s briefly introduce the general tech-
nique. Consider a system the state of which is charac-
terized by a set of nonnegative integers (say the number
of different particles). The vector space corresponding to
such a system can be constructed using the raising and
lowering operators (A†

µ’s and Aµ’s, respectively), and the
corresponding number operators Nµ, through

[Aµ, A†
ν ] =δµ

ν ,

[Aµ, Aν ] =0,

[A†
µ, A†

ν ] =0,

Aµ |0〉 =0,

Nµ :=∆µ α
β A†

α Aβ ,

∆µ α
β :=δµ

β δα
β ,

|n〉 :=
∏

µ

(A†
µ)nµ |0〉,

〈m|n〉 =δm n, (1)

where the kets |n〉 form a basis for the vector space cor-
responding to the system. Note that by several types of
particles, one may mean several species of particles or par-
ticles in several places (or both).

Corresponding to any set of probabilities Pn of finding
the system in the state |n〉 (having nµ particles of type µ),
there is a probability vector in the vector space which is

|P 〉 =
∑

n

Pn |n〉. (2)

Any physical state of such a system is characterized by a
vector like

|P 〉 = f(A†) |0〉, (3)

where f(A†) is a Taylor series in A† with nonnegative
coefficients and with the sum of coefficients equal to one.
This last condition can be written as one of the following
equivalent forms

f(S) =1,

〈S| f(A†) =〈S|, (4)

where S is a covector all of its coefficients are equal to
one, and

〈S| = 〈0| eSµ Aµ

. (5)

The observables of such a system are functions of the num-
ber operators. The expectation value of the observable
g(N) is

〈g(N)〉 = 〈S| g(N) |P 〉,
= 〈0| g(N + A) f(A† + S) |0〉,
=: 〈0| ḡ(A) f(A† + S) |0〉, (6)

where in the last equality commutation relations between
A’s and A†’s have been used to rearrange them in g(N+A)
so that A†’s are all in the left of A’s. Specially, if the
system has a multi-Poisson probability distribution with
parameters Λµ:

|P 〉 = eΛµ (A†
µ−Sµ) |0〉, (7)

then
〈g(N)〉 = ḡ(Λ). (8)

A general continuous-time stochastic process is described
by a linear operator (Hamiltonian) H with nonnegative
nondiagonal elements and the property that

〈S|H = 0. (9)

Such a Hamiltonian can be written in terms of the an-
nihilation and creation operators. Specifically, a process
involving the annihilation of k particles and creation of l
particles is described by the Hamiltonian

H = (A†
α1

· · ·A†
αl

Aβ1 · · ·Aβk

− Sα1 · · ·Sαl
∆β1 γ1

δ1 · · ·∆βk γk
δk

A†
γ1

· · ·A†
γk

Aδ1 · · ·Aδk)

× Cα1···αl
β1···βk

(N),

= [A†
α1

· · ·A†
αl

Aβ1 · · ·Aβk − Sα1 · · ·Sαl
N (Nβ1 · · ·Nβk)]

× Cα1···αl
β1···βk

(N), (10)

where C’s are nonnegative rates, and N means normal-
ordering, that is putting A†’s at the left of A’s.

The evolution of the state vector of the system (|P (t)〉)
is through

|P (t)〉 = U(t, 0) |P (0)〉, (11)

where

∂

∂t
U(t, 0) =H U(t, 0),

U(0, 0) =1. (12)

So the expectation value of an observable Q at the time t
can be written like

〈Q(t)〉 =〈S|Q |P (t)〉,
=〈S|QH(t) |P (0)〉, (13)

where

QH(t) :=U−1(t, 0)Q U(t, 0),
d
dt

QH(t) =[QH(t), HH(t)]. (14)
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One notes that the Heisenberg operators QH are in fact the
ordinary operators in them A’s and A†’s are substituted
by A(t)’s and A†(t)’s.

One also has

〈Q(t)〉 =〈0| Q̃ |P̃ (t)〉,
=〈0| Q̃H(t) |P̃ (0〉, (15)

where

|P̃ 〉 :=eSµ Aµ |P 〉,
Q̃ :=eSµ Aµ

Q e−Sµ Aµ

,

Q̃H(t) :=Ũ−1(t, 0) Q̃ Ũ(t, 0), (16)

and Ũ is defined similar to (12), but with H̃ in place of H .
It is seen that the effect of tilde on the operators is just
to change A†

α to (A†
α + Sα).

3 Double scaling in annihilation processes
of low rates

Consider a reaction-annihilation process with the
Hamiltonian

H = H0 + HI, (17)

where

H0 :=Mα
β A†

α Aβ , (18)

HI :=
∑

k

Cβ1···βk
[Aβ1 · · ·Aβk −N (Nβ1 · · ·Nβk)], (19)

where
Sα Mα

β = 0. (20)

Since only the symmetric part of C enters the
Hamiltonian, from now on it is assumed that C is sym-
metric. H0 describes a reaction, change of a particle of
type β to a particle of type α with the rate Mα

β , while
HI describes annihilations. For the observable g(N), one
has then

〈g[N(t)]〉 = 〈0|Ũ−1(t, 0) ḡ(A) Ũ(t, 0) |P̃ (0)〉, (21)

where the evolution of Ũ is governed by by H̃ :

H̃ = Mα
β A†

α Aβ +
∑

k

Cβ1···βk
{Aβ1 · · ·Aβk

−N [(Nβ1 + Aβ1) · · · (Nβk + Aβk)]}, (22)

and
|P̃ (0)〉 = f̃(A†) |0〉. (23)

Suppose that the initial state vector describes a large
number of particles, and the annihilation rates are small,
specifically so that f̃(A†/λ) and (λk−1 Cβ1···βk

) (for all
k’s) both exist as λ → ∞. One can then define another

pair of annihilation and creation operators through the
transformation

Aβ =: λaβ ,

A†
α =: λ−1 a†

α. (24)

Writing A’s and A†’s in terms of a’s and a†’s, and sending
λ to infinity, it is seen that in the Hamiltonian H̃ only
those terms survive that are linear in A†. So in this double-
scaling limit, one can use instead of H̃ the Hamiltonian H̃s:

H̃s := Mα
β A†

α Aβ −
∑

k

k Cβ1···βk
Nβ1 Aβ2 · · ·Aβk , (25)

where use has been made of the fact that C’s are symmet-
ric. It is now easily seen that in this limit,

〈g[N(t)]〉 = 〈0| ḡ[Ãs(t)] |P̃ (0)〉, (26)

where Ãα
s (t)’s satisfy

d
dt

Ãα
s =

(
Mα

β − ∆β1 α
β

∑

k

k Cβ1···βk
Ãβ2

s · · · Ãβk
s

)
Ãβ

s .

(27)
This is a set of differential equations for Ãα

s ’s, which are
commuting at t = 0 and remain commuting at later times.
Specifically, if the initial state of the system is a multi-
Poisson distribution (7), then with this evolution the sys-
tem always remains in a state of multi-Poisson distribu-
tion, but with evolving parameters Λα(t) which satisfy

d
dt

Λα =

(
Mα

β − ∆β1 α
β

∑

k

k Cβ1···βk
Λβ2 · · ·Λβk

)
Λβ .

(28)
This equation can be solved perturbatively. One defines

Λα(t) =: Rα
β(t)Y β(t), (29)

where

d
dt

R =M,

R(0) =1. (30)

To be more specific, let’s consider a system described by
a reaction and a k-particle annihilation. One has

d
dt

Y α = (R−1)α
σ Dσ

β1···βk
(Rβ1

α1 Y α1) · · · (Rβk
αk

Y αk),

(31)
where

Dσ
β1···βk

:= −k Cν (β2···βk
∆ν σ

β1), (32)

and the (β2 · · ·βk β1) means that part which is symmetric
with respect to the indices. Equation (31) can be rewritten
like

Y α(t) = Λα(0) +
∫ t

0

dt′ (R−1)α
σ(t′) Dσ

β1···βk

×[Rβ1
α1(t

′)Y α1(t′)] · · · [Rβk
αk

(t′)Y αk(t′)],
(33)
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and from that

Λα(t) = Rα
β(t)Λβ(0)

+
∫ t

0

dt′ Rα
σ(t − t′) Dσ

β1···βk
Λβ1(t′) · · ·Λβk(t′). (34)

The above expression can be visualized by a set of graphs.
Each graph consists of vertices and directed links. Each
vertex has one outgoing link and k incoming links. Each
graph is connected, has no loops, and has only one out-
going link. Λα(t) is the sum of possible such graphs, the
values of them are calculated using the following rules.

• To each point of the graph (the beginning points, the
end point, and the vertices) is assigned a time. The
time corresponding to the end of a link should not be
smaller than the time corresponding to the beginning
of that link. The time corresponding to the beginnings
of the incoming links of the graph are 0, and the time
corresponding to the end of the outgoing link of the
graph is t.

• To each directed link is assigned a factor R, the argu-
ment of which is the time corresponding to the end of
the link minus the time corresponding to the beginning
of the link.

• To each vertex is assigned a factor D.
• To the beginning point of each incoming link of the

graph is assigned a factor Λ(0).
• The value assigned to a graph is the product of the val-

ues assigned to various parts of the graph, integrated
over the times corresponding to the vertices.

Using this scheme, one can in principle find Λ(t) up to
desired order (number of vertices).

4 The large time behavior of the system

The real parts of the eigenvalues of M are nonpositive,
and zero is an eigenvalue of M . Assuming that the only
eigenvalue with nonnegative real part is zero, and that
this eigenvalue is nondegenerate, the large time behavior
of R is simple. The large time behavior of R depends on
the spectrum of M near zero. If there is a gap in the
spectrum, that is if the supermum of the real parts of the
eigenvalues (apart from zero) is negative, then

lim
t→∞Rα

β(t) = uα Sβ , (35)

where u is the normalized right eigenvector of M corre-
sponding to the eigenvalue 0:

M u =0,

Sα uα =1. (36)

If there is no gap in the spectrum of M near the eigenvalue
zero, but still the only eigenvalue of M with zero real part
is zero, and this eigenvalue is nondegenarte, then

Rα
β(t) ∼

(
t

τ

)−δ

uα Sβ , t → ∞, (37)

where τ and δ are constants depending on the behavior of
the spectrum of M near zero.

In the case there is a gap in the spectrum, for t → ∞
one can substitute the right-hand side of (35) for R in
the expressions for the graphs, as for most of the times,
the argument of R is large. This is equivalent to rewrit-
ing (34) as

Λα(t) = uα

[
Sβ Λβ(0)

+
∫ t

0

dt′ Sσ Dσ
β1···βk

Λβ1(t′) · · ·Λβk(t′)

]
, (38)

or

λ(t) = Sβ Λβ(0) +
∫ t

0

dt′ D [λ(t′)]k, (39)

where
Λα(t) =: uα λ(t), (40)

and
D := Sσ Dσ

β1···βk
uβ1 · · ·uβk . (41)

It is easy to solve (39). One has

d λ

dt
= D λk, (42)

from which one obtains

λ(t) =
Sα Λα(0)

{1 − (k − 1)D [Sβ Λβ(0)]k−1 t}1/(k−1)
, (43)

or

Λα(t) =
uα Sγ Λγ(0)

{1 + k (k − 1)Cβ1···βk
uβ1 · · ·uβk [Sβ Λβ(0)]k−1 t}1/(k−1)

.

(44)

If there is no gap in the spectrum of M near zero, one
has to substitute (37) in (34). It is then seen that Λ(t) is
proportional to u, for large times. Putting the ansatz

Λα(t) ∼ t−µ uα, t → ∞, (45)

along with (37) in (34), one arrives at

t−µ ∼ c t−δ + I(t), (46)

where

I(t) ∼
∫ t−y

x

dt′ (t − t′)−δ t′−k µ. (47)

x and y are introduced to ensure that the approximations
used for R and Λ are valid in the integration domain. A
dimensional analysis shows that for large t,

I(t) ∼ c1 t−δ + c2 t−k µ + c3 t1−δ−k µ, t → ∞. (48)

So,

t−µ ∼ c′1 t−δ + c′2 t−k µ + c′3 t1−δ−k µ, t → ∞. (49)
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The meaning of this, is that the two largest exponents
entering this expression should be equal. As k > 1, the
exponent −k µ is smaller than −µ. So it cannot be among
the largest exponents. There remains three possibilities:

µ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
k

, k δ < 1

δ, k δ > 1

1 − δ

k − 1
, k δ > 1.

(50)

It can be shown that the third case does not occur. To
see this, consider the integration corresponding to the a
vertex all of its incoming links are incoming links of a
graph. The time dependence of the integral involved is

I ′(t) ∼ d1 t−δ + d2 t−k δ + d3 t1−δ−k δ, (51)

where t is the time corresponding to the end of the outgo-
ing link. It is seen that for k δ > 1, the largest exponent
in the right-hand side is −δ, which shows that the result
of the integration is proportional to t−δ (for large times).
Repeating this for successive vertices, One finds that all
graphs are proportional to t−δ. So the correct value for µ
is δ. One can then summarize (50) in

µ = max
(

δ,
1
k

)
. (52)

Defining

kc :=
1
δ
, (53)

it is seen that the system exhibits a dynamical phase tran-
sition: for k > kc, annihilation does not enter the relax-
ation exponent of the system; while for k < kc, it is the
annihilation which determines the relaxation exponent.

A note is here in order. If instead of (45), one choose an
ansatz that the relaxation of Λ is exponential rather than
power law, then the integral on the right-hand side of (34)
tends to zero faster than Λ itself (as k > 1), which means
that for large times, only the first term on the right-hand
side of (34) determines Λ, so it should decay exponentially,
which is not the case.

As an example, consider a system consisting of parti-
cles of a single species diffusing on a d-dimensional lattice
with symmetric rates. Suppose that there is a k-particle
annihilation (double-scaled) as well. The types of the parti-
cles are just the sites of the lattice, denoted by x (d-tuples
of integers). The matrix M describing the diffusion is then

M =
d∑

i=1

ri (Ti + T−1
i − 2), (54)

where Ti is the one-site translation in the ith direction.
The eigenvalues of M are

E(θ) :=
d∑

i=1

2 ri (cos θi − 1). (55)

For a finite lattice, θ’s are discrete and there is a gap in
spectrum at zero. For an infinite lattice, the spectrum is
continuous at zero, and a steepest-descent study shows
that

δ =
d

2
. (56)

This shows that in this case, the system never crosses the
critical point k = kc, as kc ≤ 2 and k ≥ 2.

5 Concluding remarks

A system was investigated consisting of several types
of bosonic particles. By bosonic, it is meant there can
be more than one particle of each type (at each site).
In [17–19], similar systems were investigated and exact
results including phase transitions were obtained for the
case of at most two particle creation or annihilation. In
the case investigated here, there is no creation, but there
is k-particle annihilation, where k can be larger than 2.
The case of small annihilation rate, together with large
initial number of particles was investigated in more de-
tail. It was shown that this system exhibits a dynamical
phase transition, which is controlled by k and another pa-
rameter related to the rates of one-particle reactions.

References
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18. M. Paessens, G. M. Schütz, J. Phys. A 37, 4709 (2004)
19. F. Baumann, M. Henkel, M. Pleimling, J. Richert, J. Phys.

A 38, 6623 (2005)


